1	$b = \frac{2}{3}a + 2$	P1	for process to rearrange the equation to give y in terms of x	
1	3		eg $y = \frac{7 - 3x}{2}$ or $y = -\frac{3}{2}x + \left(\frac{7}{2}\right)$ or $m = -\frac{3}{2}$	
		P1	for using their gradient in $mn = -1$	
		P1	for showing a process to find the gradient of PQ eg $\frac{b-4}{a-3}$	
			OR for substituting $x = 3$ and $y = 4$ in $y = \frac{2}{3}$ " $x + c$	
		P1	(dep P3) for forming an equation in a and b eg $\frac{b-4}{a-3} = \frac{2}{3}$ or $b = \frac{2}{3}$ or $a+2$	
			OR correct equation in terms of x and y eg $y = \frac{2}{3}x + 2$	$y-4=\frac{2}{3}(x-3)$ gets P4
		A1	for $b = \frac{2}{3}a + 2$ oe	Accept 0.66 or 0.67 oe for 2/3

2	$y = -\frac{3}{4}x - \frac{11}{4}$	M1	for identifying gradient of $\frac{4}{3}$	Ignore constant term
		M1	for beginning a method to find the gradient of the perpendicular line $eg \frac{4}{3} \times m = -1$ or identifies gradient of perpendicular line as $-\frac{3}{4}$	Can ft providing gradient is clearly stated
		A1	for $y = -\frac{3}{4}x - \frac{11}{4}$ or any equivalent equation	$4y + 3x = -11$ $y + 5 = -\frac{3}{4}(x - 3)$

3	9.75	P1	process to find the gradient of L $\left(=-\frac{3}{2}\right)$	
		P1	process to find the gradient of the perpendicular line M	
			eg use of $-\frac{1}{m}$ or states gradient as $\frac{2}{3}$	
			$\mathbf{or} \ \ y = \frac{2}{3}x + c$	
		B1	(indep) gives y coordinate of $B = 8.5$ oe	Could be indicated other ways, eg 8.5 on the y axis of a diagram
		P1	(dep P2) process to find x coordinate of C (= 3) or y coordinate of C (= 4) eg the first stage of solving equations or using elimination by substitution, to find a coordinate of C .	ft their linear equation for M with L; allow some error in manipulation of these linear equations as long as the overall process is correct.
		A1	9.75 oe	Award 0 marks for a correct answer with no supportive working.

4	$y = -\frac{1}{3}x + 8$	M1	for a method for finding the gradient of L_2 eg use of $-\frac{1}{m}$ or $-\frac{1}{3}$	
		M1	(dep) for substitution of (9, 5) into $y = "-\frac{1}{3}"x + c$	
		A1	for $y = -\frac{1}{3}x + 8$ oe	$y-5 = -\frac{1}{3}(x-9)$ gets M2A1

5	(a)	(9, 7.5)	M1	for x coordinate = $PO(6) \times \frac{3}{2}$ (=9) or y coordinate = $OQ(3) \times \frac{5}{2}$ (=7.5) or $PO(6) \times \frac{5}{2}$ (=15) or $OQ(3) \times \frac{3}{2}$ (=4.5)	
			A1	cao	
	(b)	y = -2x + 3	P1	for process to find the gradient of the line, eg $3 \div 6$ (=0.5) or $y = mx + 3$	Could use P and R or Q and R as ft from (a)
			P1	for process to find gradient of perpendicular eg $-1 \div [gradient \text{ of } PQ] (=-2)$	
			A1	for $y = -2x + 3$ oe	